Bank Soal Latihan Limit Fungsi Aljabar
Sifat-Sifat Limit Fungsi
Pembahasan Soal Limit Fungsi Aljabar
1. \lim_{ x\to a}\frac {x^2 + (3 - a)x - 3a}{x - a} = .....
a. a
b. a + 1
c. a + 2
d. a + 3
e. a + 4
2. \lim_{ x\to 2}\frac {x^3 - 4x}{x - 2} = .....
a. 2
b. 4
c. 6
d. 8
e. 10
3. \lim_{ x\to 3}\frac {x^2 - 9}{x - 3} = .....
a. 2
b. 3
c. 4
d. 5
e. 6
4. \lim_{ x\to 2}\frac {x^2 - 5x + 6}{x^2 + 2x - 8} = .....
a. 3
b. 2½
c. 2
d. 1
e. \frac {-1}{6}
5. \lim_{ x\to 1}\frac {x^2 - 5x + 4}{x^3 - 1} = .....
a. 3
b. 2½
c. 2
d. 1
e. -1
6. \lim_{ x\to 3} (\frac {1}{x-3}-\frac {6}{x^2-9}) = .....
a. \frac {-1}{6}
b. \frac {1}{6}
c. \frac {1}{3}
d. \frac {1}{2}
e. 1
7. \lim_{ x\to 3} {x^3+ 2x^2 + 5x} = .....
a. 20
b. 40
c. 60
d. 70
e. 80
8. \lim_{ x\to 1}\frac {x^5 - 1}{x - 1} = .....
a. 3
b. 4
c. 5
d. 6
e. -1
9. \lim_{ x\to 2}\frac {x^3 - 4}{x - 4} = .....
a. 3
b. 4
c. 5
d. 6
e. 7
10. \lim_{ x\to 2}\frac {x - 3}{x^2 + x - 12} = .....
a. 4
b. 3
c. 3/7
d. 1/7
e. 0
11. Diketahui: f(x)=\begin{cases}3x-p,\ x\leq 2 \\ 2x+1,\ x \gt 2 \end{cases} Agar \lim\limits_{x \to 2}f(x) mempunyai nilai, maka p=...
\begin{align}
a.\ & -2 \\
b.\ & -1 \\
c.\ & 0 \\
d.\ & 1 \\
e.\ & 2
\end{align}
12. Nilai \lim\limits_{x \to 2} \dfrac{2x^{2}-x-6}{3x^{2}-5x-2} =\cdots
\begin{align}
a.\ & -1 \\
b.\ & 0 \\
c.\ & \dfrac{1}{5} \\
d.\ & 1 \\
e.\ & 7
\end{align}
13. \lim\limits_{x \to 3} \dfrac{x^{2}-9}{2x^{2}-7x+3} =\cdots
\begin{align}
a.\ & \dfrac{1}{2} \\
b.\ & \dfrac{5}{6} \\
c.\ & \dfrac{6}{7} \\
d.\ & \dfrac{7} {6} \\
e.\ & \dfrac{6}{5} \end{align}
14. Nilai \lim\limits_{x \to 3} \dfrac{x-3}{x^{2}+x-12} =\cdots
\begin{align}
a.\ & 4 \\
b.\ & 3 \\
c.\ & \dfrac{3}{7} \\
d.\ & \dfrac{1}{7} \\
e.\ & 0
\end{align}
15. Nilai \lim\limits_{x \to 2} \dfrac{x^{2}+2x-8}{x^{2}-x-2} =\cdots
\begin{align}
a.\ & 3 \\
b.\ & 2 \\
c.\ & 0 \\
d.\ & -2 \\
e.\ & -3 \end{align}
16. Nilai \lim\limits_{x \to 3} \dfrac{\left( x-2 \right)^{2}-1}{x-3} =\cdots
\begin{align}
a.\ & 0 \\
b.\ & 1 \\
c.\ & 2 \\
d.\ & 4 \\
e.\ & 6 \end{align}
17. Nilai \lim\limits_{x \to 2} \dfrac{x^{2}-5x+6}{x^{2}-4} =\cdots
\begin{align}
a.\ & -\dfrac{1}{4} \\
b.\ & -\dfrac{1}{8} \\
c.\ & \dfrac{1}{8} \\
d.\ & 1 \\
e.\ & \dfrac{5}{4} \end{align}
18. Nilai \lim\limits_{x \to 2} \dfrac{x^{3}-4x}{x-2} =\cdots
\begin{align}
a.\ & 32 \\
b.\ & 16 \\
c.\ & 8 \\
d.\ & 4 \\
e.\ & 2 \end{align}
19. Nilai \lim\limits_{x \to 1} \dfrac{x^{2}-5x+4}{x^{3}-1} =\cdots
\begin{align}
a.\ & 3 \\
b.\ & 2\frac{1}{2} \\
c.\ & 2 \\
d.\ & 1 \\
e.\ & -1 \end{align}
20. Jika p \gt 0 dan \lim\limits_{x \to p} \dfrac{ x^{3}+px^{2}+qx}{x-p}=12, maka nilai p-q
adalah...
\begin{align}
a.\ & 14 \\
b.\ & 10 \\
c.\ & 8 \\
d.\ & 5 \\
e.\ & 3
\end{align}
21. Nilai \lim\limits_{x \to 2} \dfrac{x^{2}-3x+2}{x-1} =\cdots
\begin{align}
a.\ & -2 \\
b.\ & -1 \\
c.\ & 0 \\
d.\ & 1 \\
e.\ & 2
\end{align}
22. Nilai dari \lim\limits_{x \to 0} \dfrac{6x^{5}-4x}{2x^{4}+x} =\cdots
\begin{align}
a.\ & -4 \\
b.\ & -2 \\
c.\ & 0 \\
d.\ & 2 \\
e.\ & 4 \end{align}
23. Nilai \lim\limits_{x \to 5} \dfrac{x^{2}-x-20}{x-5} =\cdots
\begin{align}
a.\ & 9 \\
b.\ & 5 \\
c.\ & 4 \\
d.\ & -4 \\
e.\ & -9 \end{align}
24. Nilai \lim\limits_{x \to 2} \dfrac{x^{2}+2x-8}{x^{2}+4x-12} =\cdots
\begin{align}
a.\ & \infty \\
b.\ & 1 \\
c.\ & \dfrac{3}{4} \\
d.\ & \dfrac{1}{2} \\
e.\ & 0
\end{align}
25. Nilai \lim\limits_{x \to 3} \dfrac{2x^{2}-4x-6}{x^{2}-2x-3} =\cdots
\begin{align}
a.\ & -2 \\
b.\ & 0 \\
c.\ & 2 \\
d.\ & 6 \\
e.\ & 8
\end{align}
26. Nilai \lim\limits_{x \to -4} \dfrac{x^{2}+7x+12}{2x+8} =\cdots
\begin{align}
a.\ & -1 \\
b.\ & -\dfrac{1}{2} \\
c.\ & \dfrac{7}{8} \\
d.\ & \dfrac{3}{2} \\
e.\ & \dfrac{7}{2}
\end{align}
27. Nilai \lim\limits_{x \to 4} \dfrac{x^{2}-16}{x-4} =\cdots
\begin{align}
a.\ & 16 \\
b.\ & 8 \\
c.\ & 4 \\
d.\ & -4 \\
e.\ & -8
\end{align}
28. Nilai \lim\limits_{x \to 2} \left( \dfrac{2}{x-2}-\dfrac{8}{x^{2}-4} \right)=\cdots
\begin{align}
a.\ & \dfrac{1}{4} \\
b.\ & \dfrac{1}{2} \\
c.\ & 2 \\
d.\ & 4 \\
e.\ & \infty
\end{align}
29. \lim\limits_{x \to 2} \dfrac{x^{3}-8}{x^{2}+x-6} =\cdots
\begin{align}
a.\ & \dfrac{3}{4} \\
b.\ & \dfrac{2}{15} \\
c.\ & 1 \dfrac{1}{3} \\
d.\ & 2 \dfrac{2}{5} \\
e.\ & 6 \end{align}
30. Nilai \lim\limits_{x \to 2} \left( \dfrac{2}{x^{2}-4}-\dfrac{3}{x^{2}+2x-8} \right)=\cdots
\begin{align}
a.\ & -\dfrac{7}{12} \\
b.\ & -\dfrac{1}{4} \\
c.\ & -\dfrac{1}{12} \\
d.\ & -
\dfrac{1}{24} \\
e.\ & 0 \end{align}
31. Jika \lim\limits_{x \to -3} \dfrac{\frac{1}{ax}+\frac{1}{3}}{bx^{3}+27}=-\dfrac{1}{3^{5}}, nilai
a+b untuk a dan b bulat positif adalah...
\begin{align}
a.\ & -4 \\
b.\ & -2 \\
c.\ & 0 \\
d.\ & 2 \\
e.\ & 4 \end{align}
32. \lim\limits_{x \to 1} \left( \dfrac{1}{1-x}-\dfrac{2}{x-x^{3}} \right)=\cdot
\begin{align}
a.\ & -\dfrac{3}{2} \\
b.\ & -\dfrac{2}{3} \\
c.\ & \dfrac{2}{3} \\
d.\ & 1 \\
e.\ & \dfrac{3}{2} \end{align}
33. Diketahui f(x)=5x^{2}+3. Hasil dari \lim\limits_{h \to 0} \dfrac{f(x+h)-f(x)}{h} adalah...
\begin{align}
a.\ & 0 \\
b.\ & 5 \\
c.\ & 10 \\
d.\ & 10x \\
e.\ & 5x^{2}
\end{align}
34. \lim\limits_{t \to 2} \dfrac{4t^{4}+4t-72}{\left( t-2 \right)\left( t^{2}+3t+2 \right)}=\cdot
\begin{align}
a.\ & \dfrac{11}{4} \\
b.\ & \dfrac{11}{3} \\
c.\ & 11 \\
d.\ & 22 \\
e.\ & 33
\end{align}
35. Nilai \lim\limits_{x \to 2} \left( \dfrac{6}{x^{2}-x-2}-\dfrac{2}{x-2} \right) sama dengan...
\begin{align}
a.\ & -1 \\
b.\ & -\dfrac{2}{3} \\
c.\ & -\dfrac{1}{3} \\
d.\ & \dfrac{1}{3} \\
e.\ & \dfrac{2}{3} \end{align}
36. Jika \lim\limits_{x \to a} \left( f(x)-3g(x) \right)=2 dan \lim\limits_{x \to a} \left( 3f(x)+g(x)
\right)=1 maka \lim\limits_{x \to a} \left( f(x) \cdot g(x) \right)=\cdots
\begin{align}
a.\ & -\dfrac{1}{2} \\
b.\ & -\dfrac{1}{4} \\
c.\ & \dfrac{1}{4} \\
d.\ &
\dfrac{1}{2} \\
e.\ & 1 \end{align}
37. Jika a dan b adalah dua bilangan real dengan \lim\limits_{x \to 2} \dfrac{x^{2}+2ax+b}
{x-2}=-3, maka ab=\cdots
\begin{align}
a.\ & -35 \\
b.\ & -30 \\
c.\ & -15 \\
d.\ & -3 \\
e.\ & -1
\end{align}
38. Jika kurva f(x)=ax^{2}+bx+c memotong sumbu-y di titik (0,1) dan \lim\limits_{x \to 1}
\dfrac{f(x)}{x-1}=-4 maka \dfrac{b+c}{a}=\cdots
\begin{align}
a.\ & -1 \\
b.\ & -\dfrac{1}{2} \\
c.\ & 0 \\
d.\ & 1 \\
e.\ & \dfrac{3}{2}
\end{align}
39. \lim\limits_{x \to 1} \dfrac{x^{2n}- x}{1-x}=\cdots
\begin{align} a.\ & 2n-1 \\
b.\ & 1-2n \\
c.\ & 2n \\
d.\ & 2n-2 \\
e.\ & 2n+2
\end{align}
40. Diketahui f(x)=x^{2}+ax+b dengan f \left( b+1 \right)=0 dan \lim\limits_{x \to 0} \dfrac{ f
\left( x+b \right)}{x}=-1, maka a+2b=\cdots
\begin{align}
a.\ & -2 \\
b.\ & -1 \\
c.\ & 0 \\
d.\ & 1 \\
e.\ & 2
\end{align}
41. Jika f(x)=x^{2}+ax+b dengan f(2)=0 dan \lim\limits_{x \to 2} \dfrac{ f \left( x+1 \right)-f
\left( x \right)}{x-2}=2, maka b=\cdots
\begin{align}
a.\ & -6 \\
b.\ & -5 \\
c.\ & 0 \\
d.\ & 5 \\
e.\ & 6
\end{align}
42. Jika f(x)=x^{2}+ax+b dengan f(1)=0 dan \lim\limits_{x \to 1} \dfrac{ f \left( x+1 \right)-f
\left( x \right)}{x-1}=2, maka b=\cdots
\begin{align}
a.\ & -2 \\
b.\ & -1 \\
c.\ & 0 \\
d.\ & 1 \\
e.\ & 2
\end{align}
Post a Comment for "Bank Soal Latihan Limit Fungsi Aljabar"