Skema dan Defenisi Jenis-Jenis Bilangan Matematika
Skema Jenis-Jenis Bilangan Matematika
Defenisi Jenis-Jenis Bilangan Matematika
Materi kali ini kita akan membahas mengenai jenis-jenis bilangan.Bilangan
merupakan bagian dari angka, ada banyak manfaat bilangan dalam kehidupan
kita sehari-hari misalnya untuk mengukur umur seseorang, tanggal, mata
uang, perhitungan, melakukan pembayaran, pembelian, menghitung laba rugi,
suhu, dan lain sebagainya itulah manfaat dari bilangan, tanpa bilangan
kita tidak bisa mengenal waktu, jam, transaksi pembayaran, jumlah mata
uang dan sebagainya.
Pengertian Bilangan Kompleks |
Bilangan kompleks adalah bilangan yang terdiri dari bilangan rill dan
bilangan imajiner. Dan sering diistilahkan dalam bentu a + bi.
Pengertian Bilangan Imajiner |
Bilangan Imajiner adalah bilangan khayal atau tidak nyata yang dalam
bentuk akar bernilai negative, misalnya: √-1, √-2, √-3, √-4, √-5, √-6, √-7, √-8, √-9, √-10, ……..dan seterusnya sampai angka terliunan yang dalam akar
bernilai negatif
Pengertian Bilangan Rill |
Bilangan rill adalah bilangan yang terdiri dari bilangan pecahan dan
bilangan bulat.
Pengertian Bilangan Pecahan |
Bilangan pecahan terdiri dari pembilang dan penyebut.
Jenis bilangan pecahan terdiri dari tiga bagian yaitu: pecahan biasa,
pecahan decimal, dan pecahan campuran.
• pecahan campuran adalah bilangan yang terdiri dari bilangan bulat dan pecahan murni, biasanya angka pembilangnya lebih besar dari pada penyebut yang sering dinyatakan dalam bentuk a/b, atau a > b
Contoh dari pecahan biasa: 3/2, 5/3, 7/2, 8/3, 2½. dan masih banyak contoh lainnya
3/2 maka pembilang = 3, penyebut = 2
5/2 maka pembilang = 5, penyebut =3
7/2 maka pembilang = 7, penyebut = 2
8/3 maka pembilang = 8, penyebut = 3
• pecahan desimal adalah bilangan yang dapat dihitung mulai dari angka di belakang koma, biasanya ada satu angka digit dibelakang koma, ada dua angka digit dibelakang koma, ada tiga angka digit dibelakang koma dst…
Contoh bilangan decimal : 0,7, 0,77, 0789, 0,99999, 1,5555, 2,3333 dst………..
0,7 penjelasan: hanya satu angka digit dibelakang koma
0,77 penjelasan: hanya dua angka digit dibelakang koma
0, 789 penjelasan: hanya tiga angka digit dibelakang koma
• pecahan biasa adalah bilangan yang terdiri dari pembilang dan penyebut, tetapi bilangan ini biasanya pembilangnya lebih kecil dari penyebut.
Contoh bilangan pecahan biasa: ½, 2/5, ¾, 5/7, 8/9 ………dan seterusnya
½ maka pembilang =1, penyebut =2
2/5 maka pembilang = 2, penyebut = 5
¾, maka pembilang = 3, penyebut = 4
5/7 maka pembilang = 5, penyebut = 7
Pengertian Bilangan Bulat |
Bilangan bulat adalah bilangan yang terdiri dari bilangan negatif,
bilangan nol, dan bilangan positif
Contoh bilangan yaitu:
……….-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, ……………….
Pengertian Bilangan Cacah |
Bilangan Cacah adalah bilangan yang dimulai dari angka nol dan bilangan
positif
Contoh bilangan yaitu:
,0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ……………….
Bilangan Asli |
Bilangan Asli merupakan bilangan yang dimulai dari angka 1 dan bilangan
positif. Bilangan asli merupakan gabungan dari bilangan prima, bilangan
ganjil, bilangan genap, bilangan komposit
Contoh bilangan yaitu:
1, 2, 3, 4, 5, 6, 7, 8, 9, ……………….
Pengertian Bilangan Prima |
Bilangan Prima adalah bilangan yang dapat membagi dirinya sendiri
dan 1.
Contoh bilangan yaitu:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, dst …………….
Keterangan: bilangan prima
Maksudnya dari bilangan prima yang hanya dapat membagi dirinya sendiri
dan 1 selain itu jika ada angka lain yang membagi bilangan itu maka akan
menghasilnkan nilai decimal.
Contoh angka 2
2/2 = 1
2/1 = 2
Artinya angka tersebut masih utuh tidak bernilai decimal jika ada angka
lain yang membagi angka tersebut akan menghasilkan nilai decimal. Contoh
2/3 = 0,66667
Pengertian Bilangan ganjil |
Bilangan Prima adalah bilangan yang dimulai dari angka 1 dan angka
berikutnya ditambahkan angka 2 dari bilangan sebelumnya
Contoh bilangan yaitu:
1, 3, 5, 7, 9, 11, 13 …………….
Keterangan: bilangan prima
1, (1+2), (3+2), (5+2), dst……..
Pengertian Bilangan Genap |
Bilangan Genap adalah bilangan yang dimulai dari angka dua dan angka
berikutnya ditambahkan angka dua dari bilangan sebelumnya.
Contoh bilangan yaitu:
2, 4, 6, 8, 10, 12, 14 …………….
Keterangan: bilangan prima
2, (2+2), (4+2), (6+2), dst……..
Pengertian Bilangan Komposit |
Bilangan Komposit adalah bilangan yang memiliki lebih dari dua faktor.
Bilangan komposit dimulai dari angka 4 dan berikutnya merupakan
penjumlahan dari kelipatan 2 yang dimulai dari angka 4
Contoh bilangan yaitu:
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36,……………..
Post a Comment for "Skema dan Defenisi Jenis-Jenis Bilangan Matematika"